reusefully

Circular Economy in the Built Environment

Katherine Adams, Reusefully Ltd

Focus on Framing, 15th May 2024

About Reusefully

- Reusefully is a partnership created to provide expert circular economy advice and support within the built environment.
- We enable the practical implementation of circular economy thinking throughout the construction supply chain and provide evidence-based support and advice for related policy development. We collaborate and work with others who genuinely share this objective and value our commitment to delivering effective & impactful project outcomes.
- We address material and resource efficiency, embodied carbon and net zero, design for deconstruction, waste prevention and waste management, end markets, reuse and recycled content. Collectively, Reusefully brings together over 45 years of experience, working across multiple parts of the value chain, from small practical projects to large scale R&D, for a wide variety of clients. www.reusefully.co.uk

Some Stats (based on Defra figures)

Embodied carbon and circularity

Circular economy to us

- Circular economy = doing more with less
- Requires deep change, driven by actions throughout systems
- Needs less talk more action

https://report.circuit-project.eu/chapter/increasing-the-reuse-recyclingbuilding-materials

Life cycle approach to Circular Economy

PREVIOUS BUILDINGS

Donors of building products and materials

CURRENT BUILDINGS

Recipients – reducing carbon, cost and preserving heritage

FUTURE BUILDINGS

Designed for adaptability and future reuse = longer lived assets & future bank of resources

Clients requirements/guidance

CIRCUL	AR ECONOMY	Commercial	Retail	Logistics	Residential	Science & technology	Public spaces
GSD-21	 Develop a Circular Economy Strategy. Prioritise reuse of existing structure/ materials, in line with our Circular Economy Protocol (see Development Policies Portal). 	~	~	~	✓	~	~
GSD-22	 Carry out a detailed pre-demolition Materials Mapping Audit. Use this audit to explore where materials can be reused on site or elsewhere. 	✓	✓	1	~	~	~
GSD-23	 Set project-specific targets to maximise reuse, upcycling and recycling of unwanted resources.⁴ Review at the end of every RIBA stage. 	✓	✓	✓	~	~	~
GSD-24	- Design and specify for disassembly and reuse, in line with BREEAM WST06.	~	~	~	~	~	✓
GSD-25	 Design and specify one of the following: New materials for disassembly and reuse with a take-back scheme, to achieve our targets (by weight/volume). At least one construction package for disassembly and reuse with a take-back scheme or end-of-life scenario. 	≥30% ≥1	≥30% ≥1	≥30% ≥1	≥30% ≥1	≥30% ≥1	≥30% ≥1
GSD-26	 Develop materials passports for materials with potential for future reuse, in line with our Materials Passport Protocol (see Development Policies Portal). 	~	✓	✓	~	~	✓
GSD-27	 Source reused materials or materials with recycled content, instead of new materials, to achieve our targets (by value). 	≥50%	≥50%	≥50%	≥50%	≥50%	≥50%
GSD-28	 Source all construction materials from ethical and sustainable sources, in line with our Materials Schedule (see www.britishland.com/policies). Prioritise materials with Environmental Product Declarations and/or extracted or manufactured in the UK or EU. Report on compliance at the end of each RIBA stage. 	100%	100%	100%	100%	100%	100%
GSD-29	- Divert all unwanted resources ¹ from landfill and incineration (tonnes).	100%	100%	100%	100%	100%	100%
GSD-30	 Prioritise reuse and high-value recycling (upcycling and recycling) to achieve our targets (tonnes). 	≥90%	≥90%	≥90%	≥90%	≥90%	≥90%
GSD-31	- Recycle remaining materials via downcycling to achieve our targets.	≤10%	≤10%	≤10%	≤10%	≤10%	⊴10%
GSD-32	- Report unwanted resources' reused, upcycled, recycled and downcycled (tonnes).	~	~	~	~	~	~

London Circular Economy Statement

MAYOR OF LONDON

London Plan Guidance

Circular Economy

Statements

March 2022

- Existing buildings
 - Pre-redevelopment audits

reusefully

- Pre-demolition audits
- New buildings
 - Recycled content 20% by value
 - Recycled content for each product
 - End of life scenarios
 - End of life plan
 - Wastage rates
 - 95% diversion from landfill for CD&E waste
 - Design aspects

https://www.london.gov.uk/programmes-strategies/planning/implementinglondon-plan/london-plan-guidance/circular-economy-statement-guidance

Camden

Camden Planning Guidance | Energy efficiency and adaptation

9. Reuse and optimising resource efficiency

KEY MESSAGES

- We will expect creative and innovative solutions to repurposing existing buildings, and avoiding demolition where feasible;
- All development should seek to optimise resource efficiency and use circular economy principles.

Supporting information

- Condition and feasibility study, and options appraisal. See paragraphs 9.4 9.7. (applies to: major redevelopment applications, any development proposing substantial demolition)
- Whole Life Carbon assessment and pre-demolition audit. See paragraphs 9.6 9.7. (All applications where the option is substantial demolition)
- Resource efficiency plan. See paragraph 9.10. (All major applications, and new buildings)

Existing building uses	 How well does the building function? Identify operational positives/negatives. Existing user surveys (if occupied) to understand what works / or doesn't work If the building is not occupied have other options for reuse been explored?
Servicing	 Summary of MEP (Mechanical, Electrical, Plumbing) servicing, thermal performance and efficiency for each building component. Identify remaining lifespan of plant and discuss pros/cons of plant upgrade.
Technical: review, with evidence and photos, of existing building, based on intrusive survey.	 Upgrades required to comply with current legislation A material inventory audit, including an estimate of embodied carbon Scaled section drawings showing slab depths, floor to ceiling dimensions etc. Loading capacity of structural frame, materials strength, pile testing Energy performance of the façade SBEM (Simplified Building Energy Model) energy modelling Details of Air Tightness, thermal bridge modelling and condensation analysis in exploration of limits to fabric upgrade in existing building Future projections for carbon content of electric load should incorporate latest BEIS carbon factors
Site capacity	 What is the best use of the site? And can optimal site capacity be achieved?

Reusing existing buildings

- 9.1 "Retaining the resource value embedded in structures is one of the most significant actions you can take to reduce waste and material consumption. Include a stage in your asset management process to review the need for a brand new building/asset." (Green Construction Board, Top Tips for Embedding Circular Economy Principles in the Construction Industry)
- 9.2 Local Plan policy CC1 states we will e) require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and f) expect all developments to optimise resource efficiency.

reusefully

Substantial refurbishment and extension

This option is similar to the above, but takes into consideration the need to optimise site capacity and alter the existing structure to meet future needs. This may involve significant changes to the façade (façade replacement) but should seek to retain as much of the existing building as possible reducing the need to use new materials and reduce the loss of embodied carbon in the existing structure. If this option includes partial reclaim and recycle the development proposal should include a pre-demolition audit, as specified below.

Reclaim and recycle

Where it is demonstrated to the Councils satisfaction, that the above options are not feasible the development proposal should include a pre-demolition audit identifying all materials within the building and documenting how they will be managed. The preference should be for re-use on site, then re-use off site, remanufacture or recycling. (Providing time in the project plan for selective deconstruction techniques and materials storage to maximise reuse). New London Plan policy SI7 expects 95% of construction and demolition waste to be diverted from landfill

https://www.camden.gov.uk/documents/20142/4823269/Energy+efficiency+CPG+Jan+2021.pdf/96c4fe9d-d3a4-4067-1030-29689a859887?t=1611732902542

Existing buildings

Decision making process

Circular Economy – Maximising Value

- Recommendations for reuse/higher value materials
- Relevant and helpful case studies
- Local organisations
- Advice on practicalities
- Potential carbon savings

Material audits – Information Gathering

- Public data Google Streetview, EPCs, Ordnance Survey, planning archives
- Pre-existing surveys (eg asbestos, condition)
- Drawings original and/or updated
- Sketches
- Site visit measurements, notes, photos
- 3D imaging/scanning
- Information from building personnel

Material audits – Analysis & Reporting

- Identify materials and components present, describe condition & location, photos
- Quantities (tonnes, m³, m², other) of key components/materials
- Targets for % reuse, recycling, energy from waste/other, landfill
- Bulk volume / Number of skips
- Embodied carbon (avoided thru reuse)
- Detailed guidance: Methods/procedures, Legal requirements, Companies, Initiatives

Table 2.	Estimated	concrete	arisings	and	potential	recovery	amounts
----------	-----------	----------	----------	-----	-----------	----------	---------

Source/Component	Tonnes	Volume (m ³)	Suitable for reuse (t)	Suitable for recycling* (t)			
In-situ concrete floors	15033.5	6264.0	0.0	14883.2			
In-situ concrete walls	8884.8	3702.0	0.0	8796.0			
Floors - Omnia deck planks	2815.3	1173.0	0.0	2815.3		_	_
RC beams	2772.9	1155.4	0.0	2745.2)vorall di	uantit	tide
Other RC columns	1492.3	621.8	0.0	1477.4	veran y	uanti	1163
Façade columns	801.0	333.8	160.2 t	632.8			
Bases for plant equipment	178.0	74.1	0.0	178.0			
Concrete paving slabs	52.3	21.8	49.7 t	2.6	CL.		
Foundations	44.9	18.7	0.0	44.5	SKID	requ	Irei
Blockwork masonry walls	22.4	16.0	0.0	22.1	-		
LWC blocks (Omnia floor system)	14.9	10.5	0.0	14.9	Table 10. B	ulk volume and nu	umber of ski
Cement mortar	2.1	1.1	0.0	2.1			
Total	32114.3 t	13392.2 m ³	209.9 t	31613.9 t	Material	Calculated	Waste vo

Reuse opportunities

Item	Materials	Tonnes potentially suitable for reuse
Baised access floor panels	Chipboard, Steel	900.9
Granite cladding panels	Stone	467.1
Large pebbles (rooftop)	Stone	198.2
Facade columns	Concrete, Steel (rebar)	176.3
Perforated metal ceiling panels (incl. insulation)	Steel, Insulation	122.3
Carpet tiles	Carpet, Plastic	85.5
Stone paving	Stone	81.5
Concrete paving slabs	Concrete	49.7
Glass office partitions	Glass, Aluminium	29.3
Hanging strip lights in offices	WEEE	23.3
Ceramic floor tiles	Ceramic	22.9
Timber doors (plus glass vision panels)	Timber, Glass, Metals	21.5
Steel stairs	Steel	19.3
Handrails	Steel, Aluminium	15.0
Reconstituted stone tiles	Stone	13.9
Black reconstituted stone cladding panels	Stone	11.3
Ceramic wall tiles	Ceramic	11.0
Supporting structures for rooftop plant	Steel	7.6
WC pans	Ceramic	4.8
Rectangular light panels	WEEE	4.0
Ceramic sinks	Ceramic	3.6
Glass blocks - basement main lift area	Glass	3.4
Urinals	Ceramic	3.2
Laminated MDF kitchen cabinets, shelving and worktops	MDF (laminated)	3.1
Recessed downlights	WEEE	2.1
Hand dryers	WEEE	1.9
Timber handrails	Timber	1.7
Bulkhead lights	WEEE	1.4
Misc rooftop metal items	Metals	1.0
Total		2286.6 t

Table 10. Bulk volume and number of skips required

Material	Calculated	Waste volume	Skips number (8
Concrete	13392.2	16,070.6	2628
Timber	1240.4	1,984.6	325
Metals	565.9	1,697.8	278
Gypsum	672.9	874.8	144
Insulation	725.7	870.8	143
Stone	363.2	435.8	72
Bitumen	165.3	198.3	33
Carpet	133.7	160.4	27
Glass	130.2	156.2	26
Ceramic	34.4	41.3	7
WEEE	32.7	39.2	7
Total	17,456.4 m ³	22,529.9 m ³	3696

Carbon implications

, and the potential embodied Table 12. Estimated embodied ('embedded') carbon of materials present, carbon avoided if reuse opportunities are exploited

Material	Tonnes	tCO ₂ embedded	tCO ₂ avoided (reuse only)
Aggregate	208.7	1.6	1.5
Aluminium	10.9	71.9	20.9
Asphalt	300.0	15.0	0.0
Softwood	49.8	14.9	6.0
Stainless steel	0.4	1.8	0.0
Steel	3496.4	5419.4	91.3
Stone	640.3	448.2	401.6
Vinyl flooring	10.3	32.9	0.0
WEEE	35.0	-	-
Total	39,532.3 t	12,699.1 tCO ₂	2114.0 tCO ₂

Resource tracking & implementation

Material audit: Snapshot in time

Resource tracking:

- Continually update understanding of components & materials present
- Successive material audits, either of full building or target parts)
- Detailed logistical / practical planning & implementation
- Log decisions/actions
- Actual recovery rates vs targets/forecasts
- Lessons learned

Resource tracking & implementation

Online reuse marketplaces

- Like eBay for building materials
- Salvo been around a long time, mostly (but not all) lowervolume higher-value salvage items
- Globechain requires subscription, charity-focused, seems mostly commercial items
- Excess Materials Exchange (EME) UK-wide, dedicated marketplaces for certain clients eg Enfield, Westminster
- Enviromate
- Material Reuse Portal aggregator of other platforms for London

These platforms require a **critical mass** of users to function effectively

NetPesitive 🔾

ENFIELD

shop

antique & reclaimed recraf

demolition

Case study – 1 Triton Square (London)

Year: 2021

Sector: Office

Scale: 47,170m² / 507,735ft² (GIA/IPMS 2)

Type: Deep retrofit

Project Team: British Land (Client), ARUP (architecture, façade, and engineering), M3 Consulting (Project manager), Lendlease (Main-Contractor), AECOM (Cost Consulting, Employers Agent), Gartner (Façade Contractor)

- Updating a 1998 structure that was no longer fit for purpose.
- Retaining the original structure saved significant embodied carbon and led to further exploration of circularity.
- An estimated 25,000 tonnes of CO_2 was saved.
- Increase in operational efficiency.
- 88% of the substructure, 3300m² limestone, 35,000 tonnes of concrete, and 1877 tonnes of steel were retained, amounting to 45% of the total carbon saving.
- ▶ 3000m² of the panelised façade was reused.
- 2800m² of paving and other roof coverings were reused from other demolished buildings.
- The new extension was designed for disassembly.
- They estimate to have saved between £5-7 million by reusing materials.
- The building achieved BREEAM outstanding.

https://ukgbc.org/wp-content/uploads/2022/08/Whole-Life-Carbon-Circular-Economy-Report.pdf

New buildings

Design and specification of new buildings and spaces

Select reused & recycled components and materials

Lightweighting (avoid overengineering)

Enabling circularity at future stages in building lifecycle

- Design for disassembly
- Design for adaptability
- <u>Information</u>: ensure relevant actors later in the building lifecycle know how to use, adapt, and disassemble the building – in building information, include drawings of key systems, descriptions of technical sequences/procedures, and scenarios
- But: We need to minimise virgin resource use and waste now

Design for efficiency/adaptability/flexibility

- 10mx10m to provide maximum material efficiency in terms of steel sizing and structural tonnage.
- Review of floor loads and material requirements (reduction in upper levels)
- Use of SUDs reducing the sizes of underground storage tanks
- Designing to standard material dimensions to reduce offcuts and waste on site
- Removing redundant materials from design
- 'Exposed thermal mass' design strategy to reduce finishes
- Elevations to be structured to utilise translucent materials to give natural light into space and avoid complex lighting systems
- Allows for sub division and to create openings and interconnecting floors

Enabling future circularity

Disassembly principles

- Easy access to components and services
- Durability
- Exposed connections
- Independence
- Avoidance of unnecessary finishes
- Supporting reuse (circular economy) business models
 - Reuse(d), refurbish, remanufacture, recycle(d)
- Simplicity
- Standardisation
- Safety of disassembly

From ISO 20887 Design for Disassembly and Adaptability

reusefully

Green Transformable Building Lab - Heerlen

Product and material level

Circular business models

- Supplier takeback and remanufacture/recycling, e.g.
 - Carpet tiles (eg Interface)
 - Ceiling tiles (eg SAS)
 - Flat glass (closed loop recycling)
- Leasing e.g.
 - Façade (TU Delft Netherlands)
 - Lighting
 - Lifts
- Third party remanufacture, e.g.
 - Raised Access Flooring
 - Heating and cooling systems
 - Lighting

Introducing the Recolight Reuse Hub

Case study – Circular business models

RMF Raised Modular Flooring

- Take-back of raised access flooring
- Work closely with strip out and demolition contractors and pay for flooring
- Test check, clean, deflection tests
- Rewarranty
- Sell reused RAF back to CAT B fit-out market (10% cheaper than new panels)
- Hold an EPD for reused RAF panels
- If not reusable, will recycle

Steel reuse

- Production of a tonne of steel generates on average 1.85 tonnes of CO₂.
- Recycled content can be nearly 100% for rebar; structural steel varies (around 20% in UK)
- Technically established and cost effective (post 1970s steel) for steel reuse but encased steel is difficult
- Not enough scrap to meet the demand of new steel
- Limited reprocessing of scrap in the UK due to type of furnaces; 8.7 million tonnes are exported
- Galvanised steel difficult to rework for reuse

ASBP DISRUPT project: <u>https://asbp.org.uk/disrupt</u>

Reuse is not new: Bus station Schiphol – Nord, Amsterdam, The Netherlands

Carbon impact

reusefully

EPD by EMR, 2022

REUSABLE STEEL ENVIRONMENTAL PRODUCT DECLARATION

Programme	Programme Operator	
The International EPD® Syste	em EPD International AB	
www.environdec.com		
S-P Code	Publication Date	Validity Date
S-P-06356	2022.06.27	2027.06.26
An EPD should provide current info	mation and may be updated if conditions of	tange.

2000	Carbo	on Impact of ste	el-making route	es Kg CO ₂ /tonne s	steel produced	
5000	World Average	Sources: BH	IP Billiton, World Steel	Association, Carbon Trus	t	
2500	Electric arc fur	nace				
2000	Recycled steel	collection and proces	sing			_
1500	Basic oxygen s	teelmaking		700		
	Direct Reduce	d iron				
1000	Blast furnace i	ron 500		1300		1850
500	26	600	5 92		15	
0						
	Electric Arc	Direct Reduced	Direct reduced	Blast Furnace and	Re-used steel	World Steel
	from recycled	Gas and Electric	Hvdrogen and	Furnace 100%		Average for all
	metal	Arc Furnace 100%	Electric Arc	from iron ore		steelmaking
		from iron ore	Furnace 100%			C C
			from iron ore			

DISRUPT Toolkit

DISRUPT - Delivering Innovative Steel ReUse Project

CONSIDERATIONS FOR STEEL REUSE

Demolition Contractor

Steel

Mair

С

Deciano

Steelwork

Erector

Clion

45% of all structural steel* in construction is being reused

Steel reuse could save 250,000+ tonnes of embodied carbon per year

A set of business considerations has been developed for major supply chain stakeholders involved in steel reuse, ranging from demolition contractors to clients. These considerations

cover technical, supply chain, economic, and carbon savings, as well as other benefits.

Click the icons to see

considerations for

each stakeholder

Construction projects could save £40m annually by using reused steel

55 Great Suffolk Street

Southwark, London

Brent Cross Town Primary Substation

Brent Cross, London

redevelopment

Southwark, London

Size

154 -

sq m

70,000

Holbein Gardens (DISRUPT)

Sloane Square, London

Result

9 successful

2 unsuccessful

Meridian Water

Enfield, London

Amount

of steel

reused

353

tonnes

Sloane Square House

Sloane Square, London

Implications Carbon Implications on project savings on timelines budget 5 cost savings 2 cost neutral 660 2 slightly No tonnes more

expensive

STUDY ON MEASURING THE APPLICATION OF CIRCULAR APPROACHES IN THE CONSTRUCTION INDUSTRY ECOSYSTEM

June 2022 – May 2023

Recommendations for: 21 Core indicators 19 Supplementary indicators

4 levels – product/material; building/infrastructure; organisational; urban

Learning from 7 case studies e.g. GLA Circular Economy Statement, Level (s) sustainability standard etc

EXAMPLES OF INDICATORS RECOMMENDED PER LIFECYCLE STAGE FOR THE UPTAKE/MEASUREMENT OF CIRCULAR APPROACHES

Routemap

The Routemap for Zero Avoidable Waste in Construction

Introduction	Theme	Aim	2020s	2030s	2040s
Waste costs the construction industry an estimated £11 billion per annum and emits 3.5 million tonnes of CO2e, yet waste can be reduced, materials used more efficiently, and buildings and structures at end of life repurposed, refurbished or dismantled to enable products and materials to be a resource for new activities.	Pre Construction Clients & Design Teams	Design for end of life Design out waste Encourage refurbishment over de	molition		•
This Routemap aims to catalyse actions by all parts of the supply chain to reduce and ultimately eliminate all avoidable waste. It adopts the interpretation of Zero Avoidable Waste in construction published by the Green Construction Board (GCB) in 2020 and adopts the optimise of the waste bleramby and life	Materials	Procure with Zero Waste in mind Ensure materials are readily recy Exploit off site manufacture Reduce volume of soil to landfill			
Click on an Aims button and a new page links to appears. Click Guidance and a new page links to	Construction	More reuse and recycling of new Reduce waste from temporary w Better waste services for SME's	build waste		
published guidance. It has been prepared by the GCB's Resources and Waste Task Group with the principal authors being Katherine Adams, Rob Pearce and Jane Thornback. The project received financial support from BEIS, and was in collaboration with Defra.	In Use & End of Life	Waste from refurbishment is red Less down cycling of waste from Accurate asset info available in d	demolition		•
Click for Context Targets and Guiding Principles	Better Measurement - Better Management	Analyse and report waste to land Report on waste at project and c	fill y 2040		•
Click for Acknowledgements	<u> </u>	Strategic understanding of mater		<u></u>	20

EU Taxonomy

- > Various criteria e.g. construction of new buildings
 - > Use of pre-demolition audits
 - 90% target for reuse and recycling of construction and demolition waste (excluding backfilling)
 - Life-cycle Global Warming Potential (GWP) of the building resulting from the construction has been calculated for each stage in the life cycle and is disclosed to investors and clients on demand
 - Construction designs and techniques support circularity via the incorporation of concepts for design for adaptability and deconstruction - via Level(s) framework
 - The use of primary raw material in the construction of the building is minimised through the use of secondary raw materials with requirements e.g metals – maximum of 30% of the total material come from primary raw material
 - Electronic tools to describe the characteristics of the building as built, including the materials and components used, for the purpose of future maintenance, recovery, and reuse

https://ec.europa.eu/sustainable-finance-taxonomy/activities/activity/350/view

EU Revised Construction Product Regulations

- Every construction product sold within the EU will need to disclose its Global Warming Potential (GWP)
- By 2030 manufacturers will be expected to report the full range of environmental impact data contained within EN 15804-based Environmental Product Declarations (EPDs)
- Commission the authority to establish mandatory minimum environmental sustainability requirements for the public procurement of construction products
- Design and manufacture a product and their packaging in such a way that their overall environmental sustainability reaches the state of the art level;
- Give preference to recyclable materials and materials gained from recycling;
- Respect the minimum recycled content obligations and other limit values regarding aspects of environmental sustainability;
- Make available, in product databases, instructions for use and repair of the products;
- Design products in such a way that re-use, remanufacturing and recycling are facilitated.

Thanks for listening!

Katherine Adams

katherine@reusefully.co.uk

Sign up for our e-news at www.reusefully.co.uk

